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Abstract

The objective of the paper is to present a statistical model for predicting transport and deposition of high-inertia colliding
particles in two-phase turbulent flows. This model is based on a kinetic equation for the probability density function (PDF) of the
particle velocity distribution in a turbulent flow field. The model developed is applied to the simulation of fluctuating particle motion
and deposition in vertical pipe flow. © 2001 Elsevier Science Inc. All rights reserved.
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1. Introduction

When the volumetric fraction of the dispersed phase is
small enough such that particle-particle collisions and fluid
turbulence modulation are negligible, the particles move in-
dependently of one another. Therefore, in this case, the de-
position flow rate on surrounding boundaries is proportional
to the fraction of particles (drops), and the deposition coeffi-
cient is invariant with the particle fraction. In numerous ex-
perimental studies (e.g., Andreussi, 1983; Schadel et al., 1990;
Hay et al., 1996), a distinct deviation of the deposition flow
rate from a linear dependence and a pronounced decrease in
the deposition coefficient were revealed as the particle fraction
increases. The coalescence due to particle collisions is usually
regarded to be responsible for this effect, causing the particle
size to grow and the particle involvement in the fluctuating
motion of a carrier turbulent flow to diminish. However, in
Hay et al. (1996), it is noted that apparently the decrease in the
deposition coeflicient at large liquid flows cannot be explained
solely by an increase in drop size. As an additional reason of
reductions in the particle fluctuating velocity and the deposi-
tion coefficient with increasing particle fraction, a reduction in
the eddy—particle interaction time that is directly attributed to
particle encounters is considered. According to Hay et al.
(1996), the eddy-particle interaction time is a function of
collision frequency and, as result, is inversely proportional to
the number of drops per unit volume, and thus authors explain
the decrease in the deposition coefficient at large drop con-
centrations. At the same time, this conclusion seems to be
contrary to the numerical results obtained by Laviéville et al.
(1995) with the help of LES. As was found in Laviéville et al.
(1995), elastic encounters do not virtually affect the particle
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fluctuating velocities and even slightly prolong the eddy—par-
ticle interaction time. Thus, the phenomenon of deposition of
colliding particles in turbulent flow is not yet properly clarified.

An analytical model for predicting transport and deposition
of high-inertia particles was developed by Zaichik (1998) and
Zaichik et al. (1998). This model was based on second-moment
equations and boundary conditions for particle velocities
which had been derived from a kinetic equation for the
probability density function (PDF) of particles in a dilute two-
phase turbulent flow. The present paper describes further de-
velopments of the model in case of relatively large values of the
particle volumetric fraction when particle—particle collisions
must be allowed for.

2. Governing equations and boundary conditions

The velocities of two particles after a collision, v;, and v;)l,
are connected with their velocities before a collision, v, and
vp1, by the following relationships:

v, =, —%(1 +e)(e-kk, v, =vy —I—%(l +e)(c-k)k. (1)
To derive a set of governing continuum equations and
boundary conditions for predicting transport of the dispersed
phase, we invoke a kinetic equation for the PDF of the particle
velocity distribution. The statistical method based on kinetic
transport equations for the PDF may be regarded as a con-
secutive approach to the creation of Eulerian two-fluid models
for simulation of particle-laden turbulent flows. The intro-
duction of the PDF permits to proceed from the dynamic
stochastic description of separate particles to the statistical
description of a particle ensemble as a whole. In this paper, a
kinetic equation accounting simultaneously for both particle—
turbulence interactions and particle—particle collisions is
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Notation

relative velocity between two particles, v, — vp
particle diameter

restitution coefficient

external force (e.g., gravity) acceleration
acceleration due to gravity

deposition flow rate

particle deposition coefficient, Jy, /u, ®

unit separation vector of two particles
particle fluctuating kinetic energy, (v,v,)/2
length macroscale of turbulence
turbulence structure parameter
probability density function
particle—particle pair distribution function
radial coordinate

Tw pipe radius

Rp mass deposition flow rate, Ppw

Re,  particle Reynolds number, |W|d,/v

Scer turbulent Schmidt number

el I hv»»r-é%gjmﬁ&m

St Stokes number

T Eulerian time macroscale of turbulence

L Lagrangian integral time-scale of turbulence
Tip eddy-particle interaction time

t time

U, averaged velocity of the fluid (gas)

i turbulence intensity

u, friction velocity

(ut;) fluid Reynolds stresses

|14 averaged velocity of the dispersed phase

v; particle velocity

(vv}) particle kinetic stresses

W averaged relative velocity between the fluid and a
particle (drift velocity)

X streamwise (axial) coordinate

X; Cartesian coordinates

y wall-normal coordinate

Z droplet mass concentration, p,®

Greeks

y drift parameter

v kinematic viscosity of the fluid

V1 turbulent viscosity coefficient

p,p, densities of the continuous and dispersed phases
Ty particle relaxation time

Tp0 Stokes relaxation time

To dimensionless particle relaxation time, tyu,/ry
Te,Te1  Characteristic intercollisional times

T, dimensionless intercollisional time

1,,7. effective particle relaxation times
particle volumetric fraction
¢., ¢, restitution coefficients
" particle volumetric fraction
z reflection coefficient

employed. The turbulent velocity field of the carrier phase is
modeled by a Gaussian random process, this enables the eddy—
particle interaction in the kinetic equation to describe by a
generalized Fokker-Plank differential operator (Derevich and
Zaichik, 1988; Reeks, 1991). Thereafter, we restrict our con-
sideration to not too dense particle clouds (@ < 0.01), when
only double collisions are of importance, and the direct con-
tributions of inter-particle encounters to stresses and fluxes are
negligible. Moreover, inter-particle collisions are treated ac-
cording to (1) by means of a hard-sphere model for pairs of
mono-sized particles, as a result of which the collision term in
the PDF equation is expressed in the form of a Boltzmann-
type integral operator. In this way the PDF equation for high-
inertia particles, the relaxation time of which is much longer
than the eddy—particle interaction time (1, > Ti,), is given by

o 0P O (U—u
o ' Tox; | o T, !

T, , y 0P af2
:—(ulu //Pz v, ’U1 C k) dk d’U] (2)
rp 7w 61)]

Eq. (2) is valid for heavy particles, the density of which is much
greater compared to that of the fluid and the size of which is
smaller than the Kolmogorov length microscale. In this case,
only the drag force acting on a moving particle by the sur-
rounding fluid flow is of importance. The relaxation time,t,,
implies to be a function of the particle Reynolds number, and
hence can account for the effect of interfacial drift velocity on
the drag law. Here the particle relaxation time is determined by
the relation

2
‘[p _ Tp() 7 Tpo _ dep 7
®(Rey) 18pv
14 0.15Re%%7  for Re, < 107,
@(Rey) = b P 3)
0.11Re, /6 for Re, > 10°.

For closure of (2) it is required to presume the pair distribution
function P (v,v;). Fluctuating motion of two high-inertia
particles can be regarded as an independent (uncorrelated)
one. Therefore, similar to the kinetic theory of gases (i.e., to
the so-called molecular chaos hypotheses), the particle—particle
pair distribution function is defined as a product of the single-
particle distribution functions, that is, P(v,v;) = P(v)P(v;).

Eq. (2) generates a set of governing continuum equations
representing the conservation of mass, momentum, particle
turbulent stresses, and so on as the appropriate statistical
moments of the velocity PDF. By this means the transport
equations governing mass, momentum and kinetic stresses of
the dispersed phase are written as

0P 0DV;

ot ox

=0, 4)

oDV, 0PV V; 0D (vl U -7
+ J— ( ;>+<15( . +F,-), (5)
J P

ot ox; Ox;

J

Qo) 20wV

6@(0’ / />
ot axk o axk

o, v\ 20 (T
ottt S+ ) 5 ) 42 (B2 gy — (i) )

X Tp \ Tp
(6)
= /P do,

1
= 5 / U,‘P d’U,
I 1
wil) =5 [ =1 - v)pa.
In (5), a collision term is absent because the total momentum

of a particle system is conserved in the act of collisions. The
collision term in (6) is rearranged by making use of familiar
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Grad’s method (Jenkins and Richman, 1985; Simonin, 1991;
Zaichik and Pershukov, 1995)

Jy=—a(-e)f? 57%(@,) k5>,

Tel

2\ 4, 2n 5d,
= (3kp) 6o’ T (3kp> 81+e)3—0e)d
According to (7), the effect of particle—particle collisions on
particle turbulent stresses consists of both the dissipation of
fluctuating velocities due to inelastic impacts and the redistri-
bution between different fluctuating velocity components (the
return-to-isotropy term).

An equation for the third-order moments of particle ve-
locity fluctuations is gained from (2) by using the assumption
that the fourth-order cumulants are equal to zero, and hence
the fourth-rank correlations are represented as sums of prod-
ucts of the second-order moments. The equation thus obtained
is given by

o(vivvy) ” A(vvjv)

(7)

9

17
+ (o) = + (vp}o,)

ot " Ox, rnt o, ox,,
’og o aVz 10 a<U;U;»> ’d a(”f%)
+ <U lka >axn + <Uivn> axn + <Ujvk> axn
/ 6(v;u’.) 3 / /
HGhef) 5 )+ =0, ®)

In what follows the collision term in (8) is determined by
means of 20-moments Grad’s approximation

3 U o VAN
Jijg = o [(U Vi) — E((%%’)n)()jk + (vjv,,) 0 + (Vv )&-,-)] ;

1+ 3e

E=RG=9 ©)
The 13-moments Grad approximation yields the following
expression for the convolutions of the third-rank correlations
in (9)

(o) = 5 (Clutol)on + (o) ou + ()d,). (10)
Eqgs. (4)—(6) and (8) describe the mass and momentum transfer
in the dispersed phase at the level of the third moments. To
simulate the particle mass and momentum transfer at the level
of the second-moment equations, it is necessary to derive al-
gebraic relations for the third-rank correlations. These alge-
braic approximations can be obtain from (8) by neglecting
time evolution, convection, and generation due to mean ve-
locity gradients. As a result, with accounting for (9) and (10),
the algebraic relations for the triple correlations are given by

RICAA) o(viv)) oV
TL‘ I Yk ’oa ik . tJ
: <<w> () St (=),

i’n axn jon

(vl =

Tpfcl

Ta + (1 = 5E)7, (1)

Tyl =
The form of (11) is consistent with the relations proposed by
Hanjali¢ and Launder (1972) in turbulent single-phase flow,
and by Wang et al. (1998) for the triple particle velocity cor-
relations in dilute two-phase turbulent flow. As it is evident
from (11), in moderately concentrated particulate two-phase
flow (@ < 0.01), inter-particle collisions will cause the values
of the triple velocity correlations to decrease, and thereby tend
to diminish the diffusion transfer of particle velocity fluctua-
tions. Conversely, in dense particle-laden flow (& > 0.1), col-
lisions will enhance the diffusion transfer through their direct

contribution to the fluxes of fluctuating velocities (Zaichik and
Pershukov, 1995).

To predict the particle transport and deposition we need
knowledge of boundary conditions for governing equations
(4)-(6). Relevant boundary conditions for dilute two-phase
turbulent flow were defined by employing an approach based
on solution of a kinetic PDF equation in the near-wall region
by means of perturbation techniques (Derevich and Zaichik,
1988; Derevich, 1991; Zaichik, 1998). In such a manner,
starting from (2), we obtain the following boundary conditions
for the wall-parallel and wall-normal velocities and their
fluctuations:

>dV; TpTel
= T, =——0, (12
+1+,(¢( ) dy’ ! Tp+Tel (12)
1—;c
V, = 13
— yd? [ 2072 2 a(v? 12
Vy+1 X¢,\2f <,V> <U;2>:‘C1<}>d<ux>7 (14)
1+ y¢? b1 3 dy
1= z0* (8\? A2
- Ad’g M :mM. (15)
L+, \ ™ dy

These boundary conditions take into consideration both the
particle deposition and the effect of inelastic particle-wall
collisions. In (12)—(15), the reflection coefficient, y, character-
izes the deposition phenomenon and is equal to a probability
of particle rebound from the wall and its return into the flow
after a collision. The surface is perfectly absorbing if y =0,
and the particle deposition is absent if y = 1. The restitution
coefficients, ¢, and ¢, allow for the momentum loss during
the bouncing process, respectively, in the wall-parallel and
wall-normal directions.

In the absence of inter-particle collisions, the above
boundary conditions recover those obtained in Zaichik (1998).
The influence of inter-particle collisions on the boundary
conditions manifests itself in virtue of the diffusion transfer
mechanism by substituting the effective relaxation time 7, (or
7,1) for the particle relaxation time t,.

Thus Egs. (4)—(7), (11) and boundary conditions (12)—(15)
enable one to describe the transport of colliding high-inertia
particles in turbulent flow at the level of the second-order
moments.

3. Eddy—particle interaction time

The Lagrangian fluid turbulence time-scale defined along a
particle trajectory (the so-called eddy—particle interaction time)
is a major quantity that characterizes the behavior of particles
in turbulent flow. For very small (non-inertial) particles, the
eddy—particle interaction time, 7;,, coincides with the integral
Lagrangian time-scale for a fluid point, 73 . However, for suf-
ficiently inertial particles, 71, can differ essentially from T7i,
and, depending upon flow parameters, the ratio of 7;,,/7;, may
be both larger and smaller than unity. In this paper, Ty, is
determined on the basis of the familiar Corrsin approximation
for predicting relation between Lagrangian and Eulerian ve-
locity correlation functions in isotropic turbulence. In this way
we obtain the following relations for the eddy—particle inter-
action times according to the directions to be parallel and
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orthogonal to the drift velocity W (Zaichik and Alipchenkov,

1997)
=T [ 64576~ (e ™00 ) L)
()

=1 [0 +576) - "0 recoy o

T— N7
exp| — 5 1],

IIIE (T) dT7

lﬁ(‘C):T-i-St[eXp(—é) —1] + St

nt, <t<(n+1)7, n=0,1,2,...,

l//(f)}2 20’ (1) T W]

s=my/ |yt + + y St=—-, y="",

\/|:/ \/§ 3 TE ’ Uy

o=l ool (16)
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Here /(7) stands for an effective run path of the particle in its
fluctuating motion with accounting for the effect of inter-par-
ticle collisions. Referring to (16), Ty, is controlled by at least
four major factors, namely, the Stokes number St character-
izing the particle’s response to fluid turbulence, the drift pa-
rameter y accounting for the so-called ‘crossing-trajectories
effect’ (Yudine, 1959; Csanady, 1963), the dimensionless in-
tercollisional time 7., and the turbulence structure parameters
m. In the case of no drift velocity (y = 0) when the crossing-
trajectories effect is absent, 7i, raises with increasing St and
decreasing 7. from 77, for small non-inertial particles to Tg for
large heavy particles. The crossing-trajectories effect causes the
eddy—particle interaction time to reduce as the drift parameter
increases. Fig. 1 illustrates the influence of the drift parameter
on Ty, according to (16) for the frequent-used exponential and
Gaussian correlation functions

£(5) = Wels) = exp(—s) and f(s) = Vi (s) = exp(—ns’/4).

As seen, the results predicted are in reasonable agreement with
LES computations of Deutsch and Simonin (1991).

4. Particle transport and deposition in vertical pipe flow

The model under development is applied to predicting
transport and deposition of fairly massive droplets in a verti-
cal, fully developed, round pipe flow. As suggested in a number
of previous experimental and theoretical studies, the profiles of
the averaged axial velocity and fluctuating velocities of large
particles in pipes and channels are becoming relatively flat

(@ 0 1 2 v

owing to intensive transverse mixing (i.e., these distributions in
the pipe cross-section for massive particles are nearly uniform).
Taking account of this fact, we can carry out a theoretical
analysis for large particles (1, > Ti,) on the basis of asymp-
totic solution of governing equations (4)—(6) along with rela-
tionships (7), (11) and boundary conditions (12)—(15). In this
approach, the profiles of the particle fraction, velocity and
velocity fluctuations are found to be uniform, and their values
are determined by appropriate mean characteristics of the
carrier phase in the pipe cross-section considered.

By this means asymptotic solutions of Egs. (4) and (5) with
boundary conditions (12) and (13) are written as

-1
(8)'/2(1 — 1, 1—x>rp<u;2>‘/2
1+ (= - :
s 1+yp, 14y Tw

Vo= <Ux F rpg>

(17)
Adr, (v7) L=y (2\"? 14y /m\12
a=—p (5 (5) )
2\1/2 -1
er<ir> :| , (18)

where 7, is the averaged particle velocity in the axial direction,
and J,, is the particle flow rate on the wall in consequence of
deposition. Here and afterwards, the overline symbolizes a
mean quantity averaged with respect to the pipe cross-section,
and the minus and plus signs in (17) refer to upward and
downward flow, respectively.

In what follows, through the integration of (6) with ac-
counting for (7), (11) and (14), (15) (the boundary condition
for (v22) is similar in form to (1[7)), the following set of alge-
braic equations for the axial, radial and tangential fluctuating
mean square velocities is derived

/ 12,
(1 _._&) <U;2>+ I_X‘f)g_l_l <2<U)2>) <UX2>TP
Tel 1+X¢r l+)( T Ty

Tip(u?) | 27,

W) 2T
T +3TC1 P
e ) 1/2 -
1+ ) (2) + L=ty (86" 5 Tiplu?) + 2
Tel " 1 +){(]5§ T Tw Tp 3‘L-cl b
L) gy by (200 Dn Tl | 2,
Tel ¢ 1+ /C(b?o T Tw Tu 3701 P

(b)© 1 2 4

Fig. 1. Eddy-particle interaction times in the directions parallel (a) and orthogonal (b) to the mean relative velocity (m = 1): 1,2 — exponential
correlations; 3,4 — Gaussian correlations; 1,3 — St = 0.1; 2,4 — St = 0.2; 5,6,7 — LES computations by Deutsch and Simonin (1991).
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22+e)
H73(3_e). (19)
It is apparent from (19) that, when the effect of inter-particle
collisions does not play an important part (z,/7q — 0), the
fluctuating velocity components are determined independently
of one others, and hence, in order to calculate the deposition
flow rate according to (18), one needs only find the particle
radial velocity fluctuations (v/?). In the case when the contri-
bution of inter-particle collisions to the balance of particle
stresses is of importance, to predict the deposition flow rate we
need to resolve all the equations in (19).

Fluid turbulence characteristics in (19) are taken to be
unchanged by the presence of particles. Furthermore, it is as-
sumed that Ti,(u?) = Ty (u?)Ti,/T. and Ty (u?) = vy/Scr =
C,u,ry. Constant C, is taken to be of 5/81 (Zaichik et al., 1998)
as a result of integrating well-known Reichardt’s formula for
the turbulent viscosity coefficient vt over the pipe cross-section
when the turbulent Schmidt number is adopted as Scr = 0.9.
The mean integral scales are defined as 7p = 0.08ry/u.,
Tx = 0.2 /u,, and L = 0.2r,, (Zaichik et al., 1998). Moreover,
according to experimental data for near-wall turbulent flows,
the relations between various fluid fluctuating velocity com-
ponents are taken as () = 3(u?) and (u))) = 2(u’).

Consider the deposition of particles on perfectly absorbing
walls. In accordance with this assumption, the particle reflec-
tion coefficient, y, is taken to be zero. Then expression (17) for
the averaged streamwise velocity of particles constricts to
Vo= (U, F 7,€), and, hence, because the particles absorbed on
the wall do not return into the flow, one can exclude from
consideration the effect of momentum loss by inelastic parti-
cle-wall collision. For y = 0, the deposition coefficient is de-
termined according to (18) as

U Ty Tw
Ci = (V2/m+ V8r) P = 1.44.

First we examine the deposition by neglecting the effect of
inter-particle collisions (z,/7.; — 0), when the particle radial
velocity fluctuation intensity in (19) does depend on other
fluctuating velocity components and is determined from the
equation

1/2 _
8w\ 1, T, TL(u?)
» DA R ) el AL/ 21
<vr>+< - PR S (21)

Without accounting for both the influence of particle inertia
and the crossing-trajectories effect on the eddy—particle inter-

W)+ () + ()

(20)

action time, i.e., by taking 7j, = 7, from (20) and (21) it
follows a simple approximation for the particle deposition
coefficient (Zaichik, 1998)

_ C()(] + Czl'(l)/3)7]
1+ C (1 + Cory™) P
Co=4C, = 0247, C = (V2/r+VEr)ClP =144, (22)

cA\ '3
szz(—) =0.54.
Y

Figs. 2(a) and (b) show comparisons of predicted particle ra-
dial velocity fluctuations and deposition rates according to (20)
and (21) with the results of DNS (Uijttewaal and Oliemans,
1996) in the absence of gravity. Curves 1 and 2 in these figures
have been obtained, respectively, without and with accounting
for the effect of particle inertia on the eddy—particle interaction
time in accordance with (16), and so curve 1 in Fig. 2(b) cor-
responds to (22). As it is evident from the figures, taking this
effect into consideration leads to a remarkably better coinci-
dence with the DNS results. The decrease in the deposition
coefficient as the particle inertia parameter t, increases is
connected with a reduction in the response of particles to en-
ergy-containing turbulent velocity fluctuations of the carrier
phase. Greater values of both parameters represented by
curves 2 in comparison with curves 1 are caused by an increase
in the eddy—particle interaction time when we take into con-
sideration the effect of particle inertia on 71, since the Eule-
rian time-scale is longer than the Lagrangian one. As a
consequence of increasing Ti,, the efficient particle inertia
1,/ Tip, characterizing the involvement of particles in the tur-
bulent motion of the fluid, diminishes, and hence the particles
respond better to turbulent velocity fluctuations. This effect is
similar in physical sense to the familiar phenomenon that the
diffusivity of heavy particles can be more than the diffusivity of
a passive scalar in the fluid that may also explain thereby 71, is
in excess of 71 (e.g., Reeks, 1977; Wang and Stock, 1993).
Fig. 3 demonstrates the effect of particle—particle collisions
on the particle fluctuating velocity components and the de-
position coefficient predicted on the basis of (20) and (21) when
the mean drift velocity is absent. Evidently the part of inter-
particle collisions in particle fluctuating motion grows with
decreasing intercollisional time, i.e., increasing t,/7;. The in-
fluence of collisions on both the radial fluctuating velocity
component and the deposition coefficient is revealed to depend
radically on whether those are elastic or inelastic, therefore
Fig. 3 presents results obtained for the limiting cases of totally
inelastic (e = 0) and elastic (e = 1) particle—particle collisions.
As it is obvious, elastic collisions, owing to the redistribution

J+

@)

i ' '
u2
10" "
10
10?
10
10°
-3
10-410" 1Io° 1Io1 0 10" 1I0° 1I01 T,
@ (b) v

Fig. 2. Comparisons of predicted particle radial velocity fluctuations (a) and deposition rates (b) with the DNS results of Uijttewaal and Oliemans

(1996) (symbols).
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10.2 L 1
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Fig. 3. Effect of inter-particle collisions on the axial (a), radial (b) and tangential (c) fluctuating velocity components as well as the deposition
coefficient (d): 1 — 7,/71 =0; 2,4 — 7p/te1 = 13 3.5 - 1, /701 = 5; 23 -e=0;45-e=1.

of turbulent energy between different velocity components,
augment the wall-normal particle fluctuating velocities and
increase consequently the deposition rate. Conversely, inelastic
collisions can attenuate all the velocity fluctuation components
and cause thereby a reduction in the particle deposition rate.
This phenomenon is apparently typical for droplet-laden flows.
However, a decrease in particle turbulence through inelastic
particle—particle encounters, that was regarded as a major
cause of a reduction in the deposition rate (Hay et al., 1996), is
not of great importance for high-inertia particles (zo > 1).

In Fig. 4, the dependence of the mass deposition flow rate
on the droplet mass concentration is displayed. The solid curve
approximates experimental data (Hay et al., 1996), and the
points represent calculations obtained using the mean diame-
ters measured in Hay et al. (1996) for determining droplet
relaxation times. Predictions have been carried out with al-

R,, kg/m’s
03F .
°2
o]
02r 1 o 4
@]
0.1F 5 .
0 0.5 1.0 1.5 2.0 2.5 Z kg/m?

Fig. 4. The mass deposition flow rate against the droplet mass
concentration: 1 — experimental approximation by Hay et al. (1996),
2 — predictions.

lowing for impacts of inter-particle encounters on turbulence
dissipation and redistribution according to (7) at e =0, and
also it takes into consideration influences of droplet inertia,
interfacial drift and intercollisinal time on the eddy—particle
interaction time. Fig. 4 displays a distinct deviation of Rp(Z)
from a straight line that is inherent in small-concentrated
particle-laden systems. Calculations performed testify that the
chief cases of the decrease in the deposition coefficient at large
liquid flows are an increase in drop size due to coalescence and
the crossing-trajectories effect. Immediate impacts of particle—
particle collisions via turbulence dissipation and redistribution
are not very important in the range of droplet concentration
existing in experiments cited in Hay et al. (1996).

5. Summary

A statistical model for predicting transport and deposition
of high-inertia colliding particles in turbulent flows is devel-
oped. This model is based on the kinetic equation for the PDF
of the particle velocity distribution and takes simultaneously
into consideration particle-turbulence interactions as well as
inter-particle collisions. The model presented is employed for
the simulation of fluctuating particle motion and deposition in
vertical pipe flow.

On the basis of an analysis performed, the following con-
clusions can be drawn: (i) Elastic collisions increase the de-
position rate, conversely inelastic collisions may result in a
deposition decrease. (ii) The major cases of the reduction in the
deposition coefficient at large liquid flows are an increase in
drop size due to coalescence as well as the ‘crossing-trajectories
effect’ due to gravity. (iii) In contrast, a decrease in particle
turbulence through inelastic particle—particle collisions is not
of great importance.
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